# 4.3 其他化学名称列表选项
TODO: 留坑代补
# 4.3.1 仅伴随粉尘气溶胶运行
WRF-Chem 代码能够预测尘埃随天气的传输。
要仅伴随灰尘运行,您应该已获得 WRF 预处理系统(WPS)的多个输入数据文件。
这些文件是 WPS GEOG 目录和 GEOGRIB.TBL_ARW_CHEM 表文件中包含的与粉尘相关的场(erosion factor, clay fraction, sand fraction)。
在下载并编译 WPS 后,需要将 GEOGRIB 表链接到 GEOGRIB.TBL_ARW_CHEM。
然后可以运行 WRF WPS,以便在 geogrib 输出中包含粉尘侵蚀场,而后包含在气象输入数据文件中。
现在,有了输入文件中的粉尘侵蚀数据,就可以使用仅粉尘的 namelist 设置(chem_opt
= 401)运行 WRF 模型。
确保在仅使用粉尘选项运行时,请关闭其他化学 namelist 设置(例如,gaschem_onoff
,phot_opt
,gas_drydep_opt
等),并且将 ustust_opt
选项设置为 1、3 或 4。
# 4.3.2 伴随直接效应运行
短波辐射反馈或所谓的直接效应包括在化学过程中。
要在仿真中打开辐射反馈,您应该选择 RRTMG
辐射方案或 Goddard
短波方案,然后打开 aer_ra_feedback
(aer_ra_feedback = 1
)。
选择这些选项后,将启用 aerosol shading,并且可以使用 aer_op_opt
为 Mie 辐射计算选择 aerosol compostition assumption。
模拟中通常使用的与辐射相关的另一个 namelist 选项是 cu_rad_feedback
。
启用后(cu_rad_feedback = .true.
),短波和光解方案将在模拟中包括未解析的云的影响。
Otherwise,该模拟可能有一个包含强烈降水雷暴(参数化而不是解析的降水)的网格单元,但是表面入射辐射和光解计算将为完全没有云的环境提供结果。
# 4.3.2 伴随间接效应运行
有几种化学选项包括间接作用,并且每个选项都包含水相化学成分(例如RADM2SORG_AQ
,RACMSORG_AQ
,CBMZ_MOSIAC_4BIN_AQ
,CBMZ_MOSAIC_8BIN_AQ
等)。
开发人员已经假设,如果用户选择包含水相化学反应的运行,那么他们也选择具有间接作用的运行(化学反应-微观物理学的相互作用)。
如果您不想包括间接影响,则必须要么包含规定的气候态气溶胶分布(例如 Gustafson 等,2007),要么选择不包含水相化学的化学选项。
要启用间接效果,应启用气溶胶直接作用(aer_rad_feedback = 1
且aer_op_opt > 0
)。
接下来,用户需要选择双重微观物理学方案;Lin 等,或 Morrison 微观物理学方案也是当前可能的选择。
接下来,打开物理 namelist 中的预测数密度选项(progn = 1
),使 Lin 方案成为双倍矩,并将对间接效应产生影响的期望传达给其他微物理学方案。
最后,打开湿清除和云化学选项(wetscav_onoff = 1
;cldchem_onoff = 1
)。
# 4.3.4 示踪剂
WRF-Chem 代码现在能够与反应化学一起预测化学示踪剂。 示踪剂选项在动力学 namelist 而不是化学 namelist 下的 namelist.input 中设置。 这将使用户可以同时使用化学和示踪剂运行 WRF-Chem。 要伴随示踪剂运行,请编辑您的 namelist.input 文件,并在动力学 nameist 部分下添加以下内容:
tracer_opt | = 0 no tracers |
= 1 烟雾示踪剂必须与生物质燃烧一起运行 | |
= 2 横向边界,平流层,边界层和表面示踪剂 | |
= 3 与 tracer_opt = 2 相同,但是将表面示踪剂替换为生物质燃烧示踪剂 | |
= 4 与 tracer_opt = 2 相同,但增加了 Lightning-NOx(LNOx)示踪剂,因此必须启用 Lightning NOx 参数化(请参阅附录 E) | |
tracer_adv_opt | = 0 对示踪剂使用正定平流 |
= 1 对示踪剂使用正定和单调对流(推荐) |
生物质燃烧示踪剂(ppmv)从生物质燃烧排放量输入中获取一氧化碳(CO)排放,并将此数据作为示踪剂提供。
与生物质燃烧产生的反应性物质不同,示踪剂会经历被动运输。
当使用 tracer_opt
namelist 选项激活示踪剂物质时,将在运行中释放一对示踪剂。
第一个示踪剂被认为是完全无源的,而另一个示踪剂具有一阶衰变且具有一天的寿命。
每个示踪剂的横向边界数据将示踪剂浓度设置为 1,并在仿真过程中平移到模型域中。
目前,平流层示踪剂在指定的最低温度之上被设置为 1,但是计划更新使用世界气象组织(WMO)对流层顶定义。
边界层示踪剂低于 PBL 高度时设置为 1。
最后,在最低模型级别(k = 1),将表面示踪剂设置为 1。
设置 tracer_opt = 4
时,还将为 lightning-NOx (LNOx) 生成一对示踪剂。
第一个示踪剂跟踪云内闪电产生的 NO。
第二个示踪剂跟踪从云到地面产生的 NO。
# 4.3.5 使用 CAM-MAM 化学试剂时的注意事项
Starting with version 3.5 of the WRF-chem model, the CAM5 micrphysics and MAM aerosol schemes has been made available. The MAM aerosol scheme, short for Modal Aerosol Model, is either a 7-mode and 3-mode modal aerosol scheme (Liu et al., 2012) derived from the Community Atmosphere Model (CAM), a component of the CESM climate model. The MAM scheme provides internally mixed representations of number concentration and mass for Aitkin, accumulation, and coarse aerosol modes. At this time the MAM is coupled only with CBM-Z photochemistry within WRF-Chem. In addition to MAM, the microphysics scheme from CAM has been ported to the WRF model. This scheme represents stratiform microphysical processes through a prognostic, two-moment formulation following the original parameterization of Morrison and Gettelman (2008). It should be noted that the CAM-MAM scheme (chem_opt=503) was extensively tested with the CAM physics inside WRF (CAMMGMP, CAMUWPBL, CAMZM, CAMUWSHCU, and RRTMG). The CAM physics options as well as the MAM chemistry could run with different combinations of the pre-existing physics and chemistry parameterizations in WRF, however, it is not recommended due to the lack of evaluation. Runs not using the full CAM-MAM package options should be examined by the user to ensure accuracy or whether the results contain numerical artifacts. In addition, the user could encounter warning and error messages when running MAM chemistry independent of CAM microphysics as this is not fully tested and the model could be running in an unsupported configuration.
When running without chemistry, the CAM microphysics scheme (Morrison and Gettelman microphysics; Morrison and Gettelman, 2008) requires TKE to be computed in oder for the scheme to function properly, so it must be used with PBL a scheme that produces TKE (e.g., UW PBL or MYJ). This scheme also uses outputs from Zhang-McFarlane cumulus scheme and the UW shallow cumulus schemes as sources of input data (Zhang and McFarlane, 1995). Care must be taken as these fields are set to zero when Zhang-McFarlane cumulus scheme and the UW shallow cumulus scheme are not in use and could result in run time errors. It is recommend that one use the CAM microphysics with the complete CAM physics suite (the UW shallow cumulus, Zhang-MacFarlane deep cumulus the UW PBL) when running the model to avoid encountering a run-time error.
When running the CAM physics suite (Morrison and Gettelman microphysics, UW shallow cumulus, Zhang-MacFarlane deep cumulus and UW PBL) with chemistry, it is recommended that the user can select from the four MAM aerosol packages. The CAM microphysics suite has not been tested with the other chemisry packages and could result in run error. If however, one wanted to test the UW PBL scheme with other chemistry options, this PBL scheme should not produce run time errors as it is an independent package. It should also be noted that the CAM microphysics in WRF does not include the full CAM5 macrophysics treatments. For this model implementation a simplified version of CAM5 macrophysics is incorporated in the CAM microphysics driver which aids in computing the CAM fractional clouds as opposed to pre-existing WRF cloud fractions (values between 0 and 1). The simplified cloud fraction inside WRF’s CAM scheme uses the same formulation to calculate convective cloud fraction, and liquid and ice cloud fraction for stratiform clouds.